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Abstract: This study aimed at evaluating the effects of the micro-immunotherapy medicine (MIM)
2LEID, both in vitro and in vivo, on several components of the innate and adaptive immune system.
MIM increased the phagocytic activity of macrophages, and it augmented the expression of the acti-
vation markers CD69 and HLA-DR in NK cells and monocytes/macrophages, respectively. The effect
of MIM was evaluated in a model of respiratory infection induced by influenza A virus administration
to immunocompetent mice in which it was able to improve neutrophil recruitment within the lungs
(p = 0.1051) and slightly increased the circulating levels of IgM (p = 0.1655). Furthermore, MIM
stimulated the proliferation of CD3-primed T lymphocytes and decreased the secretion of the im-
munosuppressive cytokine IL-10 in CD14+-derived macrophages. Human umbilical vein endothelial
cells were finally used to explore the effect of MIM on endothelial cells, in which it slightly increased
the expression of immune-related markers such as HLA-I, CD137L, GITRL, PD-L1 and ICAM-1. In
conclusion, the present study suggests that MIM might be a promising nonspecific (without antigen
specificity) immunostimulant drug in preventing and early treating respiratory infections, but not
only exclusively, as it would gently support several facets of the immune system and host defenses.

Keywords: low dose; micro-immunotherapy; 2LEID, immunostimulant drug; respiratory infectious
diseases; influenza A virus; host defenses; innate and adaptative immunity

1. Introduction

Respiratory tract infections are a heterogeneous group of conditions affecting the upper
and/or lower respiratory tract and can be caused by micro-organisms or pathogen agents
such as bacteria (Streptococcus pyogenes) or viruses (influenza A, coronaviruses, rhinoviruses,
adenoviruses, enteroviruses). Respiratory infectious diseases can affect the sinuses, throat,
airways or lungs. In particular, those that affect the lower respiratory tract tend to be
more serious than those that stay confined to the upper respiratory tract [1]. Infections
of the respiratory system encompass diverse illnesses including the common cold, acute
bronchitis, influenza or respiratory distress syndromes, the commonly associated symptoms
comprising runny/plugged nose, sneezing, sore throat, cough, hoarseness, facial pressure
and low-grade fever. As infection from one individual to another occurs through the
inhalation of contaminated droplets, the first line of defense towards those conditions
remains prevention measures, such as hand washing, superficies sanitization, wound
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disinfection or, in the case of definite symptoms, self-isolation or the use of disposable
tissues. Unless they are from bacterial origin, or if bacterial complication occurs, most
respiratory infections are self-limited, so antibiotics are useless and no evidence-based data
support their effectiveness in alleviating the manifestations of the common cold in children
and adults [2,3]. So far, current treatments mainly aim at symptom relief, and over-the-
counter topical/oral nasal decongestants, alone or in combination with antihistamines,
cough suppressants and expectorants, can be used to help the body fight against those
symptoms [4]. A plethora of factors related to modern life, such as chronic stress, pollution,
poor food choices, nutrient deficiencies or sleep deprivation, can progressively alter the
immune system and the host defenses, thus facilitating the spreading of the pathogens
within the organism [5–8]. To date, no standardized treatment aiming at their prevention
and acting as immunostimulant exists, mostly due to the heterogeneity of these diseases’
etiology. However, it has been shown that, taken as a preventive medication, daily oral
doses of 0.2 g or more of vitamin C reduced the duration of the common cold by 8% in
adults and by 13% in children, as well as reducing its severity [9]. Moreover, according
to an American survey, prophylaxis motives such as “prevention of cold/influenza” and
“immune boosting” ranked amongst the top eight reasons to take vitamin/minerals and
herbal supplements [10].

In this context, micro-immunotherapy (MI), which is a therapeutic approach aiming
at gently modulating the body’s homeostasis by maintaining and/or restoring immune
system functions [11–14], could be a great asset in the management of respiratory infectious
diseases. All the MI medicines’ formulations combine different types of active ingredients
that can be classified according to their roles and characteristics as follows: (1) chemical
mediators directly involved in immune responses, such as cytokines; (2) other signal-
ing molecules playing important roles in cell–cell communication under physiological
and pathological conditions, such as growth factors, hormones and neuropeptides; and
(3) nucleic acids, either under their original state (total DNA and RNA, extracted from Pinus
halepensis and Foeniculum vulgare, respectively) or under the form of specific nucleic acids
(SNA) [11–16]. The SNA therapeutic innovation developed by Labo’Life and protected by
the European Patent EP0670164B1 consists of single-stranded DNA molecules (16–44 bases)
specifically designed to target one or more gene and/or transcript sequences, according
to paired-base complementarity. The active ingredients employed in MI medicines are
prepared at low doses (LDs) or ultralow doses (ULDs) with the aim of modulating specific
proteins involved in the onset and/or the development of a pathology/clinical condition
by inducing either an upregulation or a downregulation in these proteins, with the aim of
reestablishing their homeostatic levels in the organism [16].

MI medicines are sucrose–lactose pilules (also called globules) for oromucosal ad-
ministration, enclosed into capsules, having the composition expressed as number of
centesimal Hahnemannian dilution (CH) like other homeopathic medicinal products. The
pharmaceutical manufacturing method complies with the European Pharmacopeia mono-
graphs 1038 and 2371, current edition. It consists of repetition series of a two-step process:
(1) a 1/100 dilution followed by (2) a calibrated vertical shaking. This procedure, which is
called “sequential kinetic process” (SKP), is reproduced until reaching the desired number
of CH for each active substance (see Supplementary Figure S1: a scheme to explain the
manufacturing process, including the SKP, is provided).

2LEID (referred to as MIM in the paper), the medication investigated in this preclinical
study, is available on the market in Belgium, Spain and Italy. MIM consists of a sequence of
10 capsules. Each of the 10 capsules envelops about 380 mg of sucrose–lactose pilules and
owns its unique combination of the active ingredients. The overall MIM composition is
described in Table 1 and in the following text: (1) human recombinant (hr) cytokines and
growth factors, namely hr-interleukin (IL)-1β (5 or 10 CH), hr-IL-2 (5 or 10 CH), hr-IL-5
(6 or 10 CH), hr-IL-6 (6 or 10 CH), hr-interferon (IFN)-γ (6 or 10 CH), transforming growth
factor (TGF)-β (10 or 30 CH) and tumor necrosis factor (TNF)-α (5 or 10 CH), and (2) nucleic
acid based-molecules (RNA and DNA at 8 or 10 CH) and SNA-HLA I, SNA-HLA II and
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SNA-EID at 10 or 16 CH (designed to target human leukocyte antigen (HLA)-I, HLA-II and
IL-2, respectively).

Table 1. Composition of the complete sequence of the MIM (in vivo experiment) and the tested
capsule (in vitro experiments).

Ingredients (CH) MIM Entire Sequence MIM Tested Capsule

hr-IL-1β 5–10 10
hr-IL-2 5–10 10
hr-IL-5 6–10 10
hr-IL-6 6–10 10

hr-IFN-γ 6–10 6
hr-TGF-β 30–10 10
hr-TNF-α 5–10 5

DNA 8–10 10
RNA 8–10 10

SNA-HLA I 10 10
SNA-HLA II 16–10 10

SNA-EID 16–10 10
Each active ingredient is given in CH. CH: centesimal Hahnemannian dilutions; SNA: specific nucleic acids.

MIM, like all the other MI medicines, is intended to be taken through oromucosal
administration, in a fasted state, to optimize the delivery of the active substances to the
lymphoid tissues of the buccal mucosae. The oral cavity possesses its proper local immune
system, where the residing immune cells, such as dendritic cells and antigen-presenting
cells, can initiate and orchestrate immune responses [17]. In particular, as reported by A.-H.
Hovav, the human oral mucosae is characterized by several dendritic cell subsets, such as
Langerhans cells, myeloid dendritic cells and plasmacytoid dendritic cells, each displaying
their own phenotypes and engaging their unique mechanisms for immune induction and
modulation [18]. Regarding the pivotal role of these cells, MIM may mediate their biological
effects by directly interacting with those particular cells as well. Moreover, there is evidence
supporting the fact that oral intake of cytokines and growth factors is an effective way to
modulate the body’s natural defenses. In particular, as the specific formulation of MIM
includes IL-1β, IFN-γ and TNF-α, which were all shown to enhance the phagocytosis
capabilities of neutrophils, our interest focused first on the innate side of the immunity
(Table 1, middle column) [19]. Moreover, IFN-γ and TNF-α cooperate and have synergistic
actions in activating the immune system, including antiviral defenses, for example by
stimulating macrophage functions [20,21]. Cooperative activation of proinflammatory
agents profoundly influences the immune response to infections, as well as the efficiency of
cellular clearance mechanisms involved in tissue repair and resolution of inflammation.
For this reason, the capsule of MIM containing IFN-γ and TNF-α at 6 and 5 CH (Table 1,
right column) has been tested in vitro to assess its capacity to stimulate innate immune
responses (phagocytosis capabilities, cell surface markers and cytokine secretion levels). In
the context of infections caused by viruses, activated macrophages and natural killer (NK)
cells, in turn, produce IFN-γ, contributing to Th1 cell differentiation in activating adaptive
immune responses [22,23].

First, the in vitro capability of MIM to stimulate Candida albicans (C. albicans) phago-
cytosis was evaluated in human macrophages, and the effects of MIM on CD14+-derived
macrophage viability, surface markers and cytokine secretion were investigated. Further-
more, MIM was evaluated in an in vivo preclinical model of respiratory infectious disease
induced by influenza A virus (IAV) administration to immunocompetent BALB/cJRj mice.
Human primary peripheral blood mononuclear cells (PBMCs) were used to appraise MIM’s
ability to stimulate both innate and adaptive immune cells. Their proliferation and activa-
tion were analyzed by flow cytometry. The same technique was used to evaluate the impact
of MIM on the expression profile of immune-related membrane markers in endothelial cells.
Overall, the main objective of this study was to investigate the effects of the MIM on several
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immune system components involved in the organism’s defense (innate and adaptive
immune responses) against the influenza A virus by using in vitro and in vivo models.

2. Results
2.1. MIM Stimulates the Phagocytosis Capabilities of Macrophages In Vitro

As one hallmark of a healthy immune system is its defense capacity against pathogens
through phagocytosis, we first wanted to focus our analysis on assessing the effects of
MIM on this innate-related part of the immune reaction. Human monocytes isolated
from one healthy donor were cultivated for seven days in a macrophage-differentiating
medium and treated for 24 h with MIM or the vehicle at either 11 or 22 mM, prior to adding
heat-killed—pHRodo Red-labeled—C. albicans for 30 min (Figure 1A). As the pHRodo
Red dye only emits fluorescence in an acidic milieu, any increase in the signal intensity
evidences an increased phagocytosis activity as the dye penetrates the phagosome. Fluo-
rescence was monitored every 8 min over a 6 h period after the initial 30 min incubation
of the labeled yeast, and the results are presented in Figure 1B,C as the mean ± SD of six
replicates per condition. As the phagocytosis rate slightly increased over time for both of
the tested concentrations in basal vehicle-treated conditions (grey dots), MIM (red dots)
led to a higher level of phagocytosis than the control conditions. After 312 min, the phago-
cytosis capabilities were indeed 1.4 and almost 4.6 times higher than the vehicle-treated
macrophages at 11 and 22 mM, respectively. Of note, at 22 mM, the intensity of the signal
was even stronger than the one induced by the “Ct (+)” phagocytosis-inducer positive
control (green dots). Being performed once, no statistical inference was done, as mentioned
in Section 4. Even if more investigations are needed to confirm the statistical significance
of these findings, these results still suggest that MIM displays a stimulatory effect on the
macrophages’ ability to phagocytose pathogens.

2.2. MIM Reduces the Expression of Cell Surface Markers on CD14+-Derived Macrophages and the
Secretion of Anti-Inflammatory Cytokines without Affecting Cell Viability

Regarding the fact that MIM exerted stimulatory effects on the biological function of
macrophages after a short incubation period of only 24 h, we then evaluated whether MIM
could also act in supporting macrophage polarization, which is an in vitro process modeled
by longer incubation periods [24]. Evidence showed that macrophages are key players in the
progression of respiratory tract infections, and their polarization towards an M1 phenotype
is characterized by high levels of proinflammatory cytokines [25,26]. In our study, freshly
isolated human CD14+ cells were thus cultured in basal M0 conditions (complete medium
+ M-CSF 50 ng/mL), with MIM/Veh. at either 5.5 or 11 mM for 6 days (see scheme in
Figure 2A). The cell viability and the expression levels of CD16 and CD200R were then
assessed by flow cytometry. Cells cultivated in the same basal M0 medium supplemented
with recombinant IFN-γ at 50 ng/mL were used as M1 macrophage-differentiation control
conditions. As illustrated in Figure 2B, MIM did not present any toxicity on the CD14+-
derived macrophages, as it did not affect the cell viability after 6 days in culture. Regarding
the expression of cell markers (Figure 2C), our results showed that MIM tends to slightly
decrease the expression of both CD16 and CD200R after 6 days of treatment at either
5.5 or 11 mM, compared with the sucrose–lactose pills alone. Decreases of 16.2% and 18.7%
in the expression of CD16 were noticed at the concentrations of 5.5 and 11 mM, respectively,
whereas decreases of 6.9% and 4.5% in the expression of CD200R were observed at those
same concentrations. The trend observed in these conditions was similar to the effect
of IFN-γ 50 ng/mL used as an M1 control, which also led to a reduction in CD16 and
CD200R levels, but with a higher magnitude (by 30% and 28.8%, respectively). In order
to induce a proinflammatory stimulus, CD14+-derived macrophages were cultured in the
presence of 100 ng/mL lipopolysaccharide (LPS). As illustrated in Figure 2D, MIM reduced
the secretion of the anti-inflammatory cytokine IL-10 (by 25.1% at the concentration of
11 mM, when compared with the vehicle), while it did not show any effect at 5.5 mM.
IFN-γ-treated CD14+-derived macrophages also displayed a reduction in IL-10 secretion
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(by 99.6%) compared with the M0 control. Finally, the medicine was not able to induce any
upregulation of TNF-α or IFN-γ in our CD14+ cells (data not shown). The experiment was
performed once; thus, more investigations are needed to confirm the statistical significance
of the findings. However, taken together, these results showed that the expression of CD16
and CD200R and the secretion of the anti-inflammatory cytokine IL-10 were downregulated
by MIM, in the same manner as the IFN-γ-mediated M1-polarized macrophages used
as control. Even if such results definitely do not allow the conclusion that MIM acts as
an M1 macrophage polarization inducer, they tend to highlight the potential of MIM to
modulate macrophage phenotype, somewhat reflecting their possible engagement towards
an M1-differentiated macrophage profile.
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Figure 1. MIM effects on the phagocytosis capabilities of monocyte-derived macrophages.
(A) Schematic representation of the experimental protocol. (B,C) Upper panels: Monocytes iso-
lated from one healthy donor were differentiated into macrophages for 6 days in presence of GM-CSF
and IFN-γ. The treatment with MIM or vehicle at either (B) 11 mM or (C) 22 mM started 24 h before
inducing the phagocytosis. Each condition was performed in 6 replicates. Data are represented
as mean ± SD. (B,C) Lower panels: Representative pictures of the wells at different time points.
Macrophages are visualized in bright light and phagocytosed C. albicans correspond to the red spots.
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Figure 2. MIM modulates CD16 and CD200R expression and IL-10 secretion of CD14+-derived
macrophages in vitro without affecting the cell viability. (A) Representative scheme of the exper-
imental protocol. CD14+ cells were obtained from PBMCs isolated from one healthy donor and
cultivated for 6 days in complete medium supplemented with M-CSF 50 ng/mL (M0) and in presence
of either MIM or vehicle at 5.5 or 11 mM. CD14+ cells cultivated in complete medium in which M-CSF
50 ng/mL and IFN-γ 50 ng/mL were added served as a positive control towards M1 macrophage-
differentiation (M1). A 24 h LPS treatment (100 ng/mL) was applied for the ELISA test as an inducer
of an inflammatory status. Viability and cell surface marker expression were assessed by flow cy-
tometry and IL-10 concentration was evaluated by ELISA. AA: amino acids. (B) Effects of MIM on
cell viability. The cell viability was assessed by flow cytometry, as the NIR-Zombie positive cells.
(C) Effects of MIM on the expression of the cell surface markers CD16 and CD200R and (D) the
secretion of IL-10. Data are represented as mean ± SD.

2.3. Preventive Treatment MIM Improves Antibody Response at Both Local and Systemic Levels in
Influenza A Virus-Induced Respiratory Infection

The tested MIM is used to boost the immune system to prevent bacterial and viral
infections. As it is prescribed as a preventive and curative treatment for respiratory infec-
tions including IAV threat, we sought to model such conditions in vivo by administrating
immunocompetent BALB/cJRj mice with either MIM or the vehicle sucrose–lactose pilules
at 11 mM (0.75 mg/mouse), by daily oral gavage, 10 days prior to intranasal inoculation
of IAV and up to 2 days after the viral challenge. The entire protocol lasted 13 days, as
depicted in Figure 3A. Animals’ body weight was monitored during the course of the whole
experiment (Figure 3B). Even though the uninfected control group (Saline + Veh.) kept in-
creasing in body weight by about 5% from Day 0 (D0) to Day 3 (D3), the animals challenged
with the virus displayed a weight stabilization from D0 to D3, and no difference in weight
was observed between the vehicle and the MIM groups. In order to assess if the treatment
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had an effect at a local level, within the respiratory tract, and impacted the inflammatory
immune cell recruitment to the bronchoalveolar tract, bronchoalveolar lavage fluid (BALF)
was collected on D3 post-IAV and the different immune cell populations were counted (i.e.,
total number of cells, lymphocytes, neutrophils, eosinophils and macrophages). None of
the analyzed immune cell populations displayed any change between groups (data not
shown). Regarding the neutrophil population, a slight increase in number was noticed in
the group treated with MIM compared with the control one, with a nonsignificant p value
of 0.1051 (Figure 3C). The measure of the viral load within the lungs was also assessed
by qPCR on D3 post-IAV and no significant change was observed between the groups
(data not shown). However, a negative close to significant correlation (Pearson’s r = −0.57;
p value = 0.08) was found between the viral load in the lungs and the number of neutrophils
in the BALF in the MIM-treated group only (Figure 3D).
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Figure 3. MIM can help the recruitment of neutrophils to the lungs and increases the plasmatic
levels of IgM in an in vivo model of respiratory infection induced by influenza A virus (IAV).
(A) Representative scheme of the general experimental protocol. MIM or vehicle (Veh.) at 11 mM
was administrated daily by oral gavage from Day–10 (D–10) to Day 2 (D2) to BALB/cJRj female mice
(n = 10 mice per group). The animals were intranasally (i.n.) infected with IAV (100 PFU) on D0, one
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hour after MIM or Veh. administration. Mice were euthanized on Day 3 (D3) and blood, bron-
choalveolar fluid (BALF) and lungs were collected. (B) Effect of MIM treatment on body weight
changes has been investigated. Data are mean ± SEM of 10 mice per group. Statistical evaluation of
differences between the experimental groups was determined by using two-way ANOVA followed
by a Dunnett’s multiple comparisons post-test. p values of less than 0.05 were considered significant.
+ p < 0.0332, ++ p < 0.0021, +++ p < 0.0002. The statistical analysis was performed with GraphPad
Prism, Version 9 for Windows (GraphPad Software Inc., San Diego, CA, USA, www.graphpad.com
accessed on 29 July 2021). (C) Neutrophil recruitment in BALF on D3. Neutrophil counts in BALF
were analyzed and the represented data are the mean ± SD of 10 mice per group. Nonparametric
Mann–Whitney test was performed (p = 0.1051) to compare both groups. (D) Correlations between
the viral load in the lungs and the number of neutrophils in the BALF on D3 in the groups treated
with vehicle (left panel) and MIM (right panel). Pearson’s r scores and p values are depicted in
each graph. (E) Plasmatic immunoglobulin levels of IgG1, IgG2a, IgG2b, IgG3 and IgM on D0.
(F) Plasmatic immunoglobulin levels of IgM on D3 post-IAV. IgM was analyzed and the represented
data are the mean ± SD of 10 mice per group. Nonparametric Mann–Whitney test was performed
(p = 0.1655) to compare both groups.

To investigate if MIM exhibited systemic effects on the humoral response, the levels
of circulating immunoglobulins (Igs) at D0 and D3 post-IAV were also assessed. MIM
used as a preventive treatment did not exert any effect on the humoral response as no
difference in the circulating levels of IgG1, IgG2a, IgG2b, IgG3 and IgM was found between
treated and untreated groups on D0 (Figure 3E). Interestingly, on D3, a close to significant
(p value = 0.1655) increase in the plasmatic IgM levels was noticed in the MIM group
compared with the vehicle group (Figure 3F). Apart from IgM, none of the other analyzed
Igs showed variations in their circulating levels (data not shown). Again, the in vivo
experiment was performed once. Indeed, more investigations are still needed to confirm
the statistical significance of these findings. However, as this model allows mimicking the
physiological immune response to a virus operating in upper airways, the results, even if
nonsignificant, suggest that MIM may have a local effect on neutrophil recruitment in the
BALF, as well as a systemic effect in increasing the levels of circulating IgM, thus revealing
its possible beneficial effects as a preventive treatment on both sides of the innate and
adaptive immunity.

2.4. MIM Increases the Proliferation and the Activation of PBMCs In Vitro

As the tested MIM contains in its formulation key regulators involved in immune cell
viability, proliferation and functions, we wanted to address its capabilities to stimulate
the proliferation and the activation of human PBMCs in both contexts: in a “naïve” basal
state (i.e., preventive effect of the MIM) and in a preprimed immune state in which T cells
would already be activated (i.e., therapeutic supportive effect of the MIM). T cell activation
is subjected to distinct signals, the first one being the presentation of peptide–antigen to
the antigen receptor complex (TCR), together with additional costimulatory signals from
coreceptors, such as CD28 [27]. Thus, a model of activating antibodies to CD3 and CD28,
used as antigen-independent signaling for the TCR complex and costimulation trigger,
respectively, was employed to mimic the preprimed immune state [28]. As illustrated in
Figure 4A, human PBMCs freshly isolated from three healthy donors were thus cultivated
in presence of 11 mM MIM/Veh. for 48 h in (i) classical culture conditions (referred to
as “no signal” in the graphs) or in preprimed conditions modeled by either (ii) the pres-
ence of the anti-CD3 antibody alone (referred to as “anti-CD3”) or (iii) the presence of
both the anti-CD3 and anti-CD28 antibodies (referred to as “anti-CD3 + anti-CD28”). The
PBMCs were also cultivated in classical culture conditions in presence of concanavalin A
as an additional internal proliferation control (Supplementary Figure S2). Total cells and
the different immune cell subpopulations depicted in the cartoon in Figure 4A (NK cells,
monocytes/macrophages, granulocytes, B lymphocytes (B cells), T lymphocytes (T cells),
CD4+ T cells and CD8+ T cells) were counted by flow cytometry and their activation status
was monitored through their CD69 expression levels. The results presented in Figure 4B
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show that, in basal conditions (“no signal”) and in the two preprimed conditions tested
(“anti-CD3” and “anti-CD3 + anti-CD28”), MIM was able to induce the proliferation of
the total PBMCs. Moreover, MIM acted in stimulating the proliferation of the NK cells
(Figure 4C) and the T cell populations of both CD4+ and CD8+ T lymphocytes (Figure 4D–F).
However, it is important to state that the experiment was performed once for each donor;
indeed, more investigations are still needed to confirm the statistical significance of these
findings. It is finally also worth mentioning that regarding the other PBMC subpopulations,
MIM displayed a slight proliferative-enhancing effect on monocytes/macrophages, granu-
locytes and B cells in basal conditions only (data not shown). Data of the absolute count
obtained for each individual donor are presented in Supplementary Figure S2. Regarding
the effect of MIM on the activation status of the PBMCs, even if MIM did not show any
effect on the CD69 expression in basal conditions, it enhanced the CD69 expression of
the NK cells in the two preprimed conditions assessed (Figure 4G), and it also enhanced
the CD69 expression in the CD8+ cells, but only in the presence of the anti-CD3 alone
(Figure 4H). Data of the CD69 expression obtained for each individual donor are presented
in Supplementary Figure S3. Finally, as the results obtained in the previous sections of this
study emphasized the MIM’s effects on the monocytes/macrophages (Figures 1 and 2),
and considering the fact that HLA-DR expression is reduced on monocytes during severe
respiratory syncytial virus infections [29], we also wanted to assess the MIM effect on the
expression of HLA-DR in this subpopulation. The results presented in Figures 4I and S4
consistently demonstrated that MIM tends to slightly increase HLA-DR expression in the
population of monocytes/macrophages in basal conditions and in presence of the cocktail
of the two stimulatory antibodies. Even if the trends found here in three healthy donors
need to be statistically confirmed, these overall results highlight that MIM increases the
proliferation of PBMCs independently of a preexisting background of primed immune
cells. Additionally, it seems that MIM would also enhance the expression of activation
markers on NK cells, CD8+ T cells and monocytes/macrophages, the magnitude of its
effects depending on the presence of an initial stimulating factor, which suggests that MIM
could play the role of a costimulatory signal for these cells.

2.5. MIM Modulates the Expression of Endothelial Cell Surface Markers In Vitro

Besides their role in angiogenesis, coagulation and vascular homeostasis, endothelial
cells constitute a key component of the immune response, as they express a range of
immune-related markers and molecules that allow them to respond to inflammatory
stimulations [30]. Their functions as vascular permeability regulators also actively implicate
them in the recruitment and the extravasation of the immune mediators at the site of
infection, facilitating the body’s defense mechanisms against aggressions. Performing a
profiling of endothelial cell membrane markers can thus give valuable information about
how MIM can impact the interplay between the immune cells, even before the onset of a
respiratory infection, in the context of preventive therapy with this medicine. A human
endothelial cell model, HUVECs, was thus chosen to decipher to what extent MIM affects
the expression of immunity-related membrane markers, which may help in explaining the
effects of this medicine previously observed in vivo at the systemic level (Figure 3). In an
attempt to choose a concentration of sucrose–lactose that does not impact the cell viability
and could interfere with the profiling experiment, HUVECs were first treated for 48 h with
increasing concentrations (ranging from 0.34 to 11 mM) of either the sucrose–lactose vehicle
pill alone or the MIM-impregnated one. Cell viability was assessed by flow cytometry (data
not shown). As the highest dose tested (11 mM) did not impact the viability, it was chosen
for the further profiling analysis. As described in Section 4, HUVECs were then treated
for 48 h with 11 mM of either MIM or the vehicle alone, the media and the corresponding
treatments being renewed once, after the first 24 h incubation period. The expression of
five cell surface markers (HLA-I, CD137L, GITRL, PD-L1 and ICAM-1) was analyzed by
flow cytometry. Tumor necrosis factor-α at 10 ng/mL was used as a positive control, as
studies have shown its role as a proper inducer of the expression of these markers [31–34].
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The expression of the five analyzed markers was slightly increased by MIM compared
with the vehicle-treated cells (Figure 5). More precisely, the expression of HLA-I was
increased by 5.8%, CD137L by 14.3%, GITRL by 3.8%, PD-L1 by 7.9% and ICAM-1 by
3.7%, compared with the vehicle alone. This last experiment was performed once, and
more investigations are still needed to confirm the statistical significance of these findings.
Nevertheless, regarding the fact that the endothelial cells are at the cornerstone between
the blood circulation and the immune system, such modulations are another indicator of
the possible crosstalk between those cells and the PBMCs and may partially explain the
systemic effects of MIM observed in vivo (Figure 3).
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48 h in (i) classical culture condition (Ct medium, referred to as “no signal”), (ii) classical culture
conditions plus anti-CD3 antibody at 0.5 µg/mL (referred to as “anti-CD3”) or (iii) classical culture
conditions plus anti-CD3 antibody at 0.5 µg/mL + anti-CD28 antibody at 2 µg/mL (referred to as
“anti-CD3 + anti-CD28”) in presence of MIM/Veh. at 11 mM. The cells were immune-stained on D2
and analyzed by flow cytometry on D3. The total number of cells and the total cell count within each
subpopulation (NK, monocytes/macrophages, granulocytes, B cells, T cells, CD4+ T cells, CD8+ T
cells) and their activation status were assessed. Each cell subpopulation was discriminated according
to the expression of the markers given Section 4. The expression of the CD69 marker was evaluated
in each subpopulation as the activation marker of reference. The expression of HLA-DR was assessed
within the monocytes/macrophages subpopulation as a supplementary activation marker. AA:
amino acids. The total number of cells (B), the NK cell count (C), the T cell count (D), the CD4+ T
cell count (E), and the CD8+ T cell count (F) were evaluated in the conditions defined in (i), (ii) and
(iii). Grey-shaded histograms represent the vehicle (Veh.) and red-shaded histograms represent MIM
treatment at 11 mM. Each histogram represents the mean ± SEM of the cell count obtained for each
individual donor, as a percentage of the MIM-condition count normalized to the Veh. condition. Each
individual point (black dot) represents the average of a triplicate per donor. (G) MIM induces the
expression of CD69 in NK cells and in CD8+ T cells (H). Each histogram represents the mean± SEM of
the CD69 expression obtained for each individual donor, as a percentage of the MIM-condition CD69
expression normalized to the Veh. condition. Each individual point (black dot) represents the average
of a triplicate per donor. (I) MIM induces the expression of HLA-DR in monocytes/macrophages.
Each histogram represents the mean ± SEM of the HLA-DR expression obtained for each individual
donor, as a percentage of the MIM-condition HLA-DR expression normalized to the Veh. condition.
Each individual point (black dot) represents the average of a triplicate per donor.
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3. Discussion

Phagocytes and macrophages in particular play an important role in clearing pathogens,
apoptotic cells and cell debris. To investigate the in vitro effect of MIM on phagocytosis
capacity, we have employed a platform that utilizes microscopy to monitor phagocytosis
in real time, coupled with software able to measure the intracellular fluorescence only,
thus eliminating background and false-positive results. MIM has increased the phagocytic
activity of human primary macrophages (Figure 1B,C), starting from early time points, at
both concentrations tested. The highest MIM concentration of 22 mM could have even
overcome the effect of the phagocytosis inducer used as a control in this experiment. Even
if no mechanistic assessment has been performed, we speculate that the two cytokines,
TNF-α and IFN-γ, used in the tested MIM, respectively at 5 and 6 CH, could explain the
enhanced phagocytic capacity of MIM-treated cells compared to vehicle-treated cells. It has
been reported that phagocytosis and killing of C. albicans are enhanced by proinflammatory
cytokines, in particular by TNF-α and IFN-γ [35]. The two cytokines may have worked
synergistically, thus inducing autocrine positive feedbacks, as it was previously reported
to happen with higher doses [20,21], finally boosting the phagocytic capacity. The recent
publication of Calabrese et al. highlighted that very few molecules per cell are needed
to effectively activate a cellular process via cascades of amplification mechanisms, and
macrophages’ phagocytic capacity has been described as one of the documented phys-
iological processes having extremely sensitive detection [36]. The authors showed that
cAMP ranging from 10−2 to 10−18 M displayed a biphasic concentration-relationship over
the macrophages’ phagocytic response, and the highest dilutions tested have induced a
stimulation ranging between 125 and 150%, as compared to the control group.

Macrophages are important players in innate immunity, not only because of their
phagocytic capabilities, but also because of their role as potent proinflammatory cytokine
producers and antigen-presenting cells [37]. Macrophages have been identified in all tis-
sues; they display remarkable plasticity and heterogeneity strictly dependent on their
microenvironment. The classical activation of macrophages from the naïve status M0 to
M1 is promoted by LPS, IFN-γ and GM-CSF. The resulting M1 phenotype is characterized
by the secretion of proinflammatory cytokines that modulate/stimulate the Th1-mediated
antigen-specific immune response. On the other side, M2 phenotypes can be induced by
IL-4, IL-13, IL-10 and TGF-β and have pronounced anti-inflammatory properties [38]. In
our model of human CD14+-derived macrophages, we found that both IFN-γ and MIM
decreased the expression of CD16 and CD200R (Figure 2C). Our results are consistent with
a previous study from Koning et al., who also assessed the expression of CD200R by flow
cytometry and found a decrease in its expression in IFN-γ-treated macrophages [39]. Inter-
estingly enough, in their transgenic model of CD200R−/− mice, Goulding et al. showed
that CD200R loss prevents influenza-induced secondary bacterial superinfection while
promoting NK cells [40], which further strengthen the therapeutic potential of MIM as pre-
ventive care against respiratory infectious diseases. On the other side, when macrophages
are stimulated with IL-10 (10 ng/mL), an M2a macrophage polarization inducer, their
CD16 expression is reduced more than 3-fold [41]. Moreover, in our LPS-stimulated human
CD14+-derived macrophages, MIM could slightly reduce the secretion of IL-10 (Figure 2D),
an immunosuppressive cytokine playing a critical role in limiting the duration and the inten-
sity of immune and inflammatory reactions. Interleukin-10 expression is tightly regulated,
as excessive IL-10 can reduce the ability of immune responses to fight against infectious
pathogens, while insufficient IL-10 is associated with chronic pathologic status, secondary
to excessive tissue damage. During the active phase of an immune response characterized
by an increase in IFN-γ production, IL-10 expression and activity can be restrained to
efficiently clear the pathogens [42]. Coherently, IFN-γ has induced the suppression of
this anti-inflammatory cytokine and the same trend has been observed in MIM-treated
cells. The results presented here are undeniably not sufficient to conclude that MIM acts as
an M1 macrophage polarization inducer in a similar manner to high doses of IFN-γ, but
they reveal for the first time the potential of MIM to modulate macrophage phenotype,
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somewhat reflecting their possible engagement towards an M1-differentiated macrophage
profile. These first pieces of evidence are definitely encouraging, considering the fact that
the promotion of M1 macrophage polarization was also advocated as a strategy to inhibit
IAV infections [43].

The in vivo part of the present study aimed at deciphering the potential of MIM
as a preventive treatment against infectious diseases in a model of respiratory infection
induced by IAV inoculation. Our results outlined the MIM effects in slightly increasing the
neutrophil counts in the BALF as well as the circulating IgM levels after a 12-day treatment
including 10 days of preventive treatment followed by 2 days of curative treatment post-
IAV infection (Figure 3A,C,F). Accumulation of neutrophils at the site of inflammation
is a typical mechanism of innate immunity. Those preliminary results are inspiring as
they suggest that MIM could also modulate the adaptive immunity, characterized by the
humoral response of the B cells. Despite the fact that no difference was found within the
subtypes of circulating IgG between the treated and untreated groups, it is not impossible
that other classes of Ig could have been impacted, out of the scope of this analysis. This
hypothesis can be formulated because it is well known that the Ig switch is, at least
partially, regulated by the IL-6 and IFN-γ secreted by the Th1 cells [44] and that those
two factors are present in the formulation of MIM. As IgM has been shown to be the first
responder to foreign invaders, including viral pathogens [45], and as it has been reported
that Influenza virus neutralization depends on the presence of natural IgM in normal
mouse serum [46], our results are encouraging as the effect of MIM on the humoral IgM
response could be beneficial for the prevention and early treatment of respiratory infections.
Interestingly, the effects of Citomix, another low-dose multicomponent-based medicine, on
IgM secretion have previously been outlined in an ex vivo model of adenoidal mononuclear
cells recovered from children who underwent operation for adenoid hypertrophy [47]. In
this study, the tested product significantly increased the expression of B memory cells and
IgM secretion, and it decreased IL-10. An interesting parallel with our work can be made
as, even if their active ingredient formulations differ, Citomix and MIM share common
low-dose cytokines (IFN-γ, IL-1β, IL-2 and IL-6) that may explain their biological effects as
immune boosters.

PBMCs encompass immune players belonging to either innate or adaptive immune
cell subtypes, all interacting together in the elaboration of the immune response. We
assessed the ability of MIM to modulate the proliferation and the activation of immune
cells in a naïve state, as well as in a context where the adaptive cells (i.e., the lymphocytes)
would also be primed. The latter context might be likened to the situation occurring
when immune responses to antigens are running and symptoms of viral or bacterial
infections are already present. Immune cell activation models usually involve LPS, as
these kinds of pathogen-associated molecular patterns (PAMPs) would interact with the
pattern recognition receptors (PRR), leading to monocyte activation. However, as it was
demonstrated that LPS treatment of PBMCs only affected CD14+ and did not lead to
significant changes in PBMC composition [48], we used a more powerful model of T cell
prepriming, involving the traditional use of anti-CD3 and anti-CD28 antibodies. As the
activation of T cells through an anti-CD3 alone for 48 h increased the cell proliferation, IFN-
γ production and IL-2R expression [49], we also used this “CD3-only” stimulating model
to assess if MIM could potentially act as a costimulatory molecule and further support
a stronger immune response in a preprimed immune state. We demonstrated here that
MIM increased the proliferation of the total PBMCs, the NK cells and the T cells (CD4+ and
CD8+) in both naïve and preprimed cells (Figure 4B–F), suggesting that its mode of action is
independent of a T cell’s preactivation. It is also worth mentioning that, in presence of MIM,
the proliferation of the T cells was even stronger than the one induced by the anti-CD3
alone (Supplementary Figure S2), suggesting that the active ingredients of this medicine
could act as a potent costimulatory signal for those cells. Interestingly, it has previously
been shown that the combination of anti-CD3 and IL-2 treatment induced the cell division
of resting T cells, whereas such results were not obtained if the cells were incubated with the
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anti-CD3 antibody alone [28]. These data suggest that the capacity of MIM to stimulate the
proliferation of T cells in presence of anti-CD3 alone could be attributable, at least partially,
to the presence of IL-2 (at 10 CH) in the tested capsule (Figures 4D–F and S2). Human
CD69 differentiation antigen is one of the earliest cell surface molecules expressed after
activation of lymphocytes and hematopoietic cells, including NK cells [50]. In addition to
confirming the data from Lawlor et al., who demonstrated that PBMCs stimulated with anti-
CD3/CD28.2 resulted in an indirect activation of NK cells [48], our results showed that, in a
preprimed immune state, MIM can considerably exacerbate the expression of this activation
marker in NK and in CD8+ T cells (Figures 4G,H and S3). CD69 upregulations have been
shown in response to IFN-γ treatment in eosinophil precursors [51] and consecutively to
a TNF-α treatment in erythroleukemic K562 cells, as it was also demonstrated that CD69
promoter contains TNF-α-responsive elements [52]. Indeed, the effect of MIM in increasing
the expression of CD69 could be attributable, at least partially, to the presence of IFN-γ
(6 CH) and TNF-α (5 CH) in the tested MIM capsule. Interestingly, as the phagocytic
capabilities of NK cells are correlated with their activation status characterized by an
increase in CD69 expression [53], our findings are coherent and also suggest that MIM could
potentiate the phagocytosis of these cells and sustain immune responses and host defenses
against pathogens. Finally, the effects of MIM in activating monocytes/macrophages
through increasing the expression of HLA-DR (Figures 4I and S4) could be, at least partially,
attributable to the presence of IFN-γ (6 CH), as it has been shown that IFN-γ increased the
expression of HLA-DR in monocytes [54].

Endothelial cells are fine-tuners of the immune responses as they share common innate
immune functions with macrophages, such as cytokine secretion, antigen presentation,
PAMP sensing or even phagocytosis, and their plasticity allows them to regulate the im-
mune surveillance over the different tissues of the organism [30]. Coherently with previous
findings [31–34], TNF-α alone is able to upregulate the four tested endothelial markers.
Furthermore, all the cytokines used in MIM are shown to stimulate those markers [55–58].
Interestingly, we report here that MIM can upregulate, even if just slightly, the expression
of five endothelial cells markers related to immune response modulation (Figure 5), similar
to the proinflammatory cytokine TNF-α. The increase in the HLA-I expression may be
linked to the immune cell recruitment observed in vivo (Figure 3C), as HLA-I signalization
was reported to impact leukocyte tethering or neutrophil adherence for instance [59]. The
slight increase in the CD137L expression can contribute to the immune-boosting effect of
MIM, as CD137L signaling in endothelial cells plays a crucial role in the production of
proinflammatory cytokines and chemokines implicated in the activation and the recruit-
ment of neutrophils [60]. Moreover, the CD137/CD137L interaction not only constitutes
a costimulatory signal triggering the expansion of the CD4+ and CD8+ T cells, but also
amplifies the inflammatory responses mediated by NK cells [61]. Our results also showed
that MIM tends to increase the expression of GITRL on the HUVEC surface (Figure 5),
which may potentially facilitate GITR/GITRL signaling and thus result in T cell activation
and proliferation [62]. Indeed, numerous studies using suboptimal preprimed anti-CD3
stimulated T cells reported the role of the GITR/GITRL axis as a costimulation signal
for the T cells [63]. Moreover, it has also been reported that GITR interaction stimulates
antiviral responses through enhanced TNF-α and IFN-γ production in vivo, which may
also, at least partially, contribute to explaining the systemic effects of MIM observed in
the murine model of viral infectious disease (Figure 3) [64]. Although this first body of
data supports the fact that MIM tends to stimulate the expression of endothelial cells
markers triggering the proliferation/activation of T cells, our results also showed that
MIM increased the expression of the checkpoint inhibitor PD-L1. As IFN-γ was shown
to promote PD-L1 expression to prevent the overactivation of T cells, thus allowing the
inflamed tissues to be protected against an excessive immune activity [65,66], the presence
of IFN-γ (6 CH) in the tested capsule may explain the observed results. As ICAM-1 is
implicated in the firm adhesion of the activated T cells to the endothelial cells, as well as
in their transendothelial migration, our results finally suggest that MIM could sustain the
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recruitment of lymphocytes to the inflammation site [67]. The expression of ICAM-1 is
induced by TNF-α, IL-1β [68] and IL-6 [69], and all of these signaling molecules are present
in MIM (5, 6 or 10 CH). Interestingly, ICAM-1 was also shown to regulate IAV during
the early stage of infection, and ICAM-1 silencing was associated with an increase in the
influenza matrix gene copy number [70]. Those results could thus reinforce the explanation
of the systemic effects of MIM observed in this study.

4. Materials and Methods
4.1. Tested Items

MIM, provided by Labo’Life Belgium, is a homeopathic medicinal product presented
in a form of sequential treatment, consisting of sucrose–lactose pilules, also termed globules,
impregnated with ethanolic preparations of LDs and/or ULDs of immune mediators
(interleukins and growth factors) and nucleic acids (DNA, RNA and SNA). The pilules are
enclosed into capsules, which are then packaged into blisters. The composition of the entire
MIM sequence is indicated in Table 1 (middle column). The entire MIM sequence was tested
in vivo and administered to the mice, according to the order indicated in blister (from 1 to
10). Due to confidentiality issues arising from intellectual property, the composition of each
specific capsule has not been disclosed. Labo’Life Belgium also manufactured and provided
the vehicle pilules, the experimental control used in all the in vitro and in vivo studies.

The vehicle, also named Veh. in the article, consists of sucrose–lactose pilules impreg-
nated with the same ethanolic preparation used to prepare LDs and/or ULDs, but lacking
active substances (see Supplementary Figure S1, which illustrates the Veh. production in
parallel with an example of MI medicine).

Regarding the in vitro experiments, only one capsule of the sequence was tested. The
composition of this capsule is as follows: hr-IL-1β (10 CH), hr-IL-2 (10 CH), hr-IL-5 (10 CH),
hr-IL-6 (10 CH), hr-IFN-γ (6 CH), hr-TGF-β (10 CH), hr-TNF-α (5 CH), DNA (10 CH), RNA
(10 CH), SNA-HLA I (10 CH), SNA-HLA II (10 CH) and SNA-EID (10 CH) (see Table 1,
right column).

4.2. Phagocytosis Capability Assessment Experiments

Peripheral blood mononuclear cells (PBMCs) from healthy volunteers were obtained
from Etablissement Français du Sang (EFS) after being isolated from buffy coats and stan-
dard Ficoll-Hypaque gradient method. Monocytes were isolated from PBMCs by adherence
to plastic for 2 h in serum-free macrophage-SFM medium (M-SFM, Gibco, Life Technologies,
Carlsbad, CA, USA) optimized for macrophage culture, at 37 ◦C in a humidified atmo-
sphere containing 5% CO2. Monocytes were seeded and differentiated in macrophages
in presence of granulocyte macrophage colony-stimulating factor (GM-CSF) and IFN-γ,
provided by Peprotech, Inc. Cranbury, NJ, USA. Regarding C. albicans labeling protocol,
briefly, C. albicans was heat-killed (1 h at 75 ◦C) before labeling with pHRodo Red, succin-
imidyl ester (pHRodo Red, SE, ThermoFisher Scientific, Waltham, MA, USA), according to
the manufacturer’s instructions. The pHRodo dye is known as a nonfluorogenic molecule
at neutral pH, drastically becoming fluorescent in acidic milieu. This situation happens
in phagolysosomes, thus indicating effective phagocytosis. C. albicans was introduced in
sodium bicarbonate with pHRodo dye (final concentration of 20 µg/mL) for 1 h, RT, in the
dark. Excess dye was washed with phosphate-buffered saline (PBS) solution. Labeled C.
albicans was finally diluted in PBS and left at 4 ◦C until use. Control for correct labeling
was realized in an acid solution (pH = 4) vs. neutral solution (pH = 7.4). After one week
of monocyte differentiation into macrophages, MIM and vehicle were incubated for 24 h
with the cells at two different sucrose–lactose concentrations: 11 and 22 mM. A positive
control (not disclosed and kept confidential by the contract research organization (CRO)
that conducted the study) was also included in the experiment. The next day, culture
medium and its treatments were replaced, before pHRodo-labeled C. albicans was added to
the cells and left on ice to allow the proper sedimentation of C. albicans. After 30 min on ice,
the plate was read on an Operetta apparatus for 6 h at 37 ◦C, 5% CO2, and data acquisition
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was realized thanks to Harmony Imaging Software (Perkin Elmer France, Villebon-sur-
Yvette, Every, France). Each well was imaged every 8 min and the Columbus 2.5.0 image
analysis software was used to conduct the phagocytosis quantitation. The experimental
scheme is described in Figure 1A. The experiment was carried out once and six replicates
were run for all conditions; indeed, no statistical inference was performed according to the
recommendation in terms of statistical analysis in fundamental research [71].

4.3. Macrophage Cell Surface Marker Expression and Cytokine Secretion Evaluation

CD14+ monocytes were freshly isolated from PBMCs thanks to the Miltenyi kit
(130-050-201). Briefly, the cells were then seeded at the density of 50,000 cells/well in
96-well plates on Day 0 and were cultivated in RPMI 1640 supplemented with 2% inacti-
vated human serum, 1 mM nonessential amino acids, 1 mM pyruvate, 2 mM L-glutamine,
10 mM HEPES buffer and 50 ng/mL M-CSF (also known as CSF-1). Cells were treated
with MIM/vehicle (at 5.5 or 11 mM) or IFN-γ 50 ng/mL (M1 macrophage-differentiation
inducer) from Day 1 until Day 7, both medium and treatments being renewed on Day 3
and Day 5. The experimental scheme is shown in Figure 2A.

For the macrophage cell surface marker experiment, the cells were harvested, labeled
and analyzed by flow cytometry on Day 7 on a BD FACS Canto II, configuration 4/2/2.
The intensity of the staining was measured as median fluorescence intensity (MFI) value.
The cell viability was appraised based on a gating of the NIR-Zombie positive cells. The
M0 and M1 macrophage populations were discriminated based on their expression of
CD14/CD64/CD86 and identified as follows: M0: CD14+/−, CD64+, CD86+; M1: CD14++,
CD64+++, CD86++. The expression of the cell surface markers CD16 and CD200R was also
evaluated. For cytokine secretion assessment, the cells were stimulated with lipopolysac-
charide (LPS) on Day 6 (100 ng/mL) and harvested on Day 7. Supernatants were collected
after cell centrifugation, and cytokine measurement was directly performed by ELISA
(LegendPlex), on fresh supernatants. The secretion of the anti-inflammatory cytokine IL-10
was analyzed. The secretion levels of TNF-α and IFN-γ were measured as well. Because
only one experiment was conducted, no statistical inference has been performed. The
results of the viability, cell markers and IL-10 secretion are presented as mean ± SD of n = 3
replicates per condition.

4.4. In Vivo Experiments

The in vivo experiment was conducted in ArtImmune/CNRS (TAAM UPS44, Orléans,
France) animal facility, in compliance with the guidelines of the French Ministry of Agri-
culture for experiments with laboratory animals (Law 87-848) and with Animal Health
regulations. All animals were kept on a 12 h light–dark cycle, at a controlled tempera-
ture (22 ± 1.5 ◦C) and 50 ± 25% hygrometry, and were housed in solid-bottomed cages
with chip bedding. The animals were provided with free access to standard food and
water. The protocol was submitted to the Ethics Committee for Animal Experimentation
of CNRS Campus Orléans (CCO) and approved by the French Minister under number
APAFIS #19230.

The respiratory infection model was induced on Day 0 by intranasal administration
of IAV H3N2 (Scotland/20/74) strain in 9-week-old female BALB/cJRj mice (n = 10 mice
per group) purchased from Janvier, France. Mice were infected intranasally with 40 µL
of saline solution containing 100 PFU of IAV under a mixture of ketamine–xylazine
(1 and 0.2 mg/mouse, respectively) or saline solution alone (control group). Preventive
treatments with MIM or sucrose–lactose vehicle pills were given daily from Day –10 to Day
2 by oral gavage route. Briefly, each day, the content of one capsule of MIM or control (Veh.)
was freshly diluted in 25 mL of sterile ultrapure water, and 2500 µL of this solution was then
diluted into 7500 µL of ultrapure water to reach the concentration of 11 mM. Each mouse
finally received daily 200 µL of 11 mM diluted pilules, corresponding to 0.75 mg/mouse.
Mice were observed daily for signs of morbidity, and blood was collected on Day 0, before
infection. Mice were weighed daily for body weight changes and euthanized on Day 3 for
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further analysis. Briefly, total and differential cell counts were assessed in BALF, viral load
was analyzed in lung homogenates and immunoglobulin levels were analyzed in plasma.
The experimental scheme is illustrated in Figure 3A.

4.5. Blood Collection

Blood from all animals included in the experiment was drawn at the inferior vena
cava into tubes containing lithium–heparin (as an anticoagulant). Tubes were centrifuged
5 min at 5000 rpm at 4 ◦C and plasma was collected, aliquoted and frozen at −80 ◦C for
further analysis.

4.6. Plasmatic Concentrations of Immunoglobulins Assessment

IgG1, IgG2a, IgG2b, IgG3 and IgM levels in plasma were determined by Luminex
immunoassay according to the manufacturer’s recommendations (#MGAMMAG-300K-05)
and by using MagPix reader (Bio-Rad Laboratories, Hercules, CA, USA). Results were
reported as pg/mL.

4.7. Bronchoalveolar Lavage Fluid Differential Leukocyte Counts

The lungs were washed four times with 0.5 mL of saline solution at room temperature.
After centrifugation at 400 g for 10 min at 4 ◦C, supernatants of the first lavage (cell-free
BALF) were stored at −80 ◦C for cytokine dosage. An aliquot of the cell pellets was stained
with Turk’s solution and counted, and 200,000 cells were centrifugated onto microscopic
slides (Cytospin at 1000 rpm for 10 min, RT). Air-dried preparations were fixed and
stained with Diff-Quick (#130832, Medion Diagnostics AG, Merz & Dade, Berlin, Germany).
Differential counts were performed using oil immersion light microscopy. One hundred
cells were observed twice in light microscopy for the determination of percentage and the
absolute number of the differential cell count.

4.8. Viral Load Determination

Lung tissues were homogenized in Trizol (Tri-Reagent, #T9424, Sigma-Aldrich, Saint-
Louis, MO, USA) and total mRNA was extracted using phenol–chloroform protocol. Briefly,
lung tissues were ground into phenol–chloroform (0.1 mL/0.2 mL) and vigorously mixed.
After centrifugation (15 min at 12,000 rpm, 4 ◦C), the transparent upper phase containing the
RNA was gently collected and mixed with 0.5 mL of isopropanol and incubated for 15 min
on ice. The solution was further centrifuged (10 min at 12,000 rpm, 4 ◦C), the supernatant
was discarded and the pellet was washed twice in 1 mL of 70% ethanol, followed by another
centrifugation (5 min at 7500 rpm, 4 ◦C). Pellets were finally dried and suspended in 30 µL of
sterile ultrapure water. cDNA was obtained from 1 µg of total RNA by reverse transcription
using GoScript Reverse Transcriptase and random primers (A5001, GoScript Reverse
Transcription System, Promega, Madison, WI, USA) according to the manufacturer’s
instructions (Promega). The reverse transcription program consisted of 5 min at 25 ◦C,
60 min at 42 ◦C and 15 min at 70 ◦C. Quantitative PCR was conducted using an AriaMx
real-time quantitative PCR analysis with GoTaq qPCR Master Mix 2 × (A6002, Promega)
with 10 µM of forward and reverse primers (Flu-1: 5′-AAGACCAATCCTGTCACCTCTGA-
3′; #HA05057218, Flu-2: 5′-CAAAGCGTCTACGCTGCAGTCC-3′; #HA05057219, Sigma).
The PCR program consisted of 10 min at 95 ◦C for polymerase activation; 40 cycles of 30 s
at 95 ◦C for DNA denaturation, 30 s at 60 ◦C for primer annealing and 30 s at 72 ◦C for
primer extension; and 1 min at 55 to 95 ◦C for the progressive increase in temperature for
the generation of the dissociation curve. Viral RNA load was expressed in absolute number.
Titer was determined from a standard curve which was prepared from dilution series of IAV
H3N2 Scotland/20/74 virus strain of known concentration. The standard curve approach
also named “absolute quantification” was used to measure the exact level of viral load in
the sample. Following amplification of the standard dilution series, the standard curve was
generated by plotting the log of the initial viral copy number against the Ct generated for
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each dilution. These points generated a linear regression line in which the Ct values of the
unknown samples were compared in order to quantify the initial copy number.

4.9. Evaluation of Cell Surface Activation Marker Expression and Proliferation of PBMC
Sub-Populations by Flow Cytometry

Freshly isolated PBMCs were cultivated in RPMI 1640 medium supplemented with
2% inactivated human serum, 1 mM nonessential amino acids, 1 mM pyruvate and 10 mM
HEPES buffer, in presence or absence of 0.5 µg/mL bottom-coated OKT3 antibody (CD3);
and combined or not with 2 µg/mL of soluble anti-CD28.2 (CD3 + CD28.2). Concanavalin
A (5 µg/mL), which is able to induce the expression of CD69, was used as a positive
control. Immune cell populations were delineated based on the following panels in the
proliferation experiment: natural killers (NK): CD3−, CD11b−, CD4−, CD8−, CD19−,
CD56+, CD14−, SSClow; monocytes/macrophages: CD3−, CD11b+, CD4−, CD8−, CD19−,
CD56−, CD14+, SSClow; granulocytes: CD3−, CD11b+, CD4−, CD8−, CD19−, CD56−,
CD14−, SSChigh; B cells: CD3−, CD11b−, CD4−, CD8−, CD19+, CD56−, CD14−, SSClow;
T cells: CD3+, CD11b−, CD4+, CD8+, CD19−, CD56−, CD14−, SSClow; CD4+: CD3+,
CD11b−, CD4+, CD8−, CD19−, CD56−, CD14−, SSClow; CD8+: CD3+, CD11b−, CD4−,
CD8+, CD19−, CD56−, CD14−, SSClow. In the NK cell activation experiment, the CD69
expression was assessed amongst the NK population characterized by the following panel:
CD3−, CD11b−, CD4−, CD8−, CD19−, CD56+, SSClow. In the monocyte/macrophage
activation experiment, the HLA-DR expression was assessed amongst the population
characterized by the following panel: CD3−, CD11b+, CD14+, SSClow.

4.10. HUVEC Immunoprofiling by Flow Cytometry

Primary human umbilical vein endothelial cells (HUVECs) (Passage 4) were seeded at
5000 cells/well in a 96-well plate in ECGM medium (PromoCell, Heidelberg, Germany)
supplemented with 2% FBS and were grown for 4 days before adding MIM/vehicle to the
medium at the desired concentrations. The cells were treated for 48 h before multipara-
metric immunostaining and flow cytometry analysis. The intensity of the staining was
measured as median fluorescence intensity (MFI) value. One experiment was performed
in triplicate for each condition. The viability and the expression levels of HLA-I, CD137
ligand (CD137L), glucocorticoid-induced tumor necrosis factor receptor-related protein
ligand (GITRL), programmed death-ligand 1 (PD-L1) and intercellular adhesion molecule-1
(ICAM-1) were assessed.

4.11. Statistical Analysis

The graphs in figures were created with GraphPad Prism, Version 9 for Windows (Graph-
Pad Software Inc., San Diego, CA, USA, www.graphpad.com, accessed on 29 July 2021).
Authors have followed the recent recommendations that encourage performing descriptive
statistics instead of making statistical inferences when the number of independent values
is small. Indeed, no statistical inference has been performed to analyze the results of the
in vitro studies. In order to show the results in a transparent manner, when data were
obtained from only one experiment, replicates were plotted together with the mean ± SD
in the graphs (Figures 1, 2 and 5).

In the PBMC experiments, the data are represented as the mean ± SEM of values
obtained from n = 3 healthy donors (Figures 4 and S2–S4). Concerning the in vivo study,
statistical evaluation of differences between the experimental groups was determined for
different parameters: (i) body weight, analyzed by using two-way ANOVA followed by a
Dunnett’s multiple comparisons post-test; (ii) neutrophil counts in BALF on D3, analyzed
by nonparametric Mann–Whitney test; (iii) plasmatic immunoglobulin levels of IgM on
D3, analyzed by nonparametric Mann–Whitney test; (iv) correlations between the viral
load in the lungs and the number of neutrophils in the BALF on D3 in the vehicle- and
MIM-treated groups, evaluated by Pearson’s r scores. p values of less than 0.05 were
considered significant.

www.graphpad.com


Int. J. Mol. Sci. 2022, 23, 110 19 of 22

5. Conclusions

Overall, the present study shows that MIM acts as an immune enhancer towards
several actors of both the innate and the adaptive immune system, implicated in the
organism’s defense. The in vivo mice model of influenza-induced respiratory disease
highlighted the potential beneficial effects of MIM against viral-mediated respiratory
diseases as a preventive and early treatment, as MIM acted at (i) a local level, in promoting
the recruitment of neutrophils to the lungs, and (ii) at a systemic level, in increasing the
circulating levels of IgM in the treated animals, compared with the control group. This
integrated model of immunocompetent mice provided the proof of concept that MIM could
act on both sides of the innate and the adaptive immune responses. Those preliminary
results were confirmed in vitro, by using human PMBCs isolated from healthy volunteers,
in which MIM increased the proliferation of total cells, NK cells and CD4+ and CD8+ T
cells, independently of the setting of a preprimed T cell context. Moreover, the activation
state of the NK cells, the CD8+ T cells and the monocytes/macrophages was also enhanced,
as evidenced by the increase in CD69 and HLA-DR expression, suggesting that MIM could
act as a costimulatory signal for those cells. We also reported here that MIM especially acts
on the innate immune responses as it increased the phagocytic activity of macrophages
and modulated their cell surface expression of CD16 and CD200R and their IL-10 cytokine
secretion in a pattern somewhat similar to that of the IFN-γ-derived M1 macrophages.
HUVEC profiling finally revealed that MIM allowed a fine modulation of the expression of
some immune-related markers such as HLA-I, CD137L, GITRL, PD-L1 and ICAM-1. These
results contribute to a better understanding of MIM’s holistic mode of action, bridging the
gap between the local and the systemic effects of this medicine found in vivo. In conclusion,
the present study suggests that MIM might be a promising nonspecific (without antigen
specificity) immunostimulant drug for the prevention and early treatment of respiratory
infections, but not only exclusively, as it would gently support several facets of the immune
system, sustaining host defenses against pathogens.
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TNF-α: tumor necrosis factor-α; ULD: ultralow dose.

References
1. Dasaraju, P.V.; Liu, C. Infections of the Respiratory System. In Med. Microbiol., 4th ed.; Baron, S., Ed.; University of Texas, Medical

Branch at Galveston: Galveston, TX, USA, 1996. Available online: http://www.ncbi.nlm.nih.gov/books/NBK8142/ (accessed on
10 November 2021).

2. Fashner, J.; Ericson, K.; Werner, S. Treatment of the Common Cold in Children and Adults. Am. Fam. Phys. 2012, 86, 7.
3. Heikkinen, T.; Ruuskanen, O. Upper respiratory tract infection. Encycl. Respir. Med. 2006, 385–388. [CrossRef]
4. Simasek, M. Treatment of the Common Cold. Am. Fam. Phys. 2007, 75, 515–520. [PubMed]
5. Segerstrom, S.C.; Miller, G.E. Psychological Stress and the Human Immune System: A Meta-Analytic Study of 30 Years of Inquiry.

Psychol. Bull. 2004, 130, 601–630. [CrossRef] [PubMed]
6. Prunicki, M.; Cauwenberghs, N.; Lee, J.; Zhou, X.; Movassagh, H.; Noth, E.; Lurmann, F.; Hammond, S.K.; Balmes, J.R.;

Desai, M.; et al. Air pollution exposure is linked with methylation of immunoregulatory genes, altered immune cell profiles, and
increased blood pressure in children. Sci. Rep. 2021, 11, 4067. [CrossRef]

7. Zhang, W.; Yu, H.; Shang, J.; Liu, T.; Ma, J.; Gu, X. Association between dietary habits and recurrent respiratory infection in
children: A case–control study. J. Tradit. Chin. Med. Sci. 2015, 2, 105–110. [CrossRef]

8. Haspel, J.A.; Anafi, R.; Brown, M.K.; Cermakian, N.; Depner, C.; Desplats, P.; Gelman, A.E.; Haack, M.; Jelic, S.; Kim, B.S.; et al.
Perfect timing: Circadian rhythms, sleep, and immunity—An NIH workshop summary. JCI Insight 2020, 5, 131487. [CrossRef]

9. Douglas, R.M.; Hemilä, H.; Chalker, E.; Treacy, B. Vitamin C for preventing and treating the common cold. Cochrane Database Syst.
Rev. 2007, CD000980. [CrossRef]

10. Kaufman, D.W.; Kelly, J.P.; Rosenberg, L.; Anderson, T.E.; Mitchell, A.A. Recent patterns of medication use in the ambulatory
adult population of the United States: The Slone survey. JAMA 2002, 287, 337–344. [CrossRef]

11. Thomas, G.; Cluzel, H.; Lafon, J.; Bruhwyler, J.; Lejeune, B. Efficacy of 2LPAPI®, a Micro-Immunotherapy Drug, in Patients with
High-Risk Papillomavirus Genital Infection. Adv. Infect. Dis. 2016, 6, 7–14. [CrossRef]

12. Floris, I.; Chenuet, P.; Togbe, D.; Volteau, C.; Lejeune, B. Potential Role of the Micro-Immunotherapy Medicine 2LALERG in the
Treatment of Pollen-Induced Allergic Inflammation. Dose-Response 2020, 18, 1559325820914092. [CrossRef]

13. Floris, I.; García-González, V.; Palomares, B.; Appel, K.; Lejeune, B. The Micro-Immunotherapy Medicine 2LARTH® Reduces
Inflammation and Symptoms of Rheumatoid Arthritis In Vivo. Int. J. Rheumatol. 2020, 2020, 1594573. [CrossRef]

14. Jacques, C.; Floris, I.; Lejeune, B. Ultra-Low Dose Cytokines in Rheumatoid Arthritis, Three Birds with One Stone as the Rationale
of the 2LARTH® Micro-Immunotherapy Treatment. Int. J. Mol. Sci. 2021, 22, 6717. [CrossRef] [PubMed]

15. Lilli, N.L.; Révy, D.; Robelet, S.; Lejeune, B. Effect of the micro-immunotherapy medicine 2LPARK® on rat primary dopaminergic
neurons after 6-OHDA injury: Oxidative stress and survival evaluation in an in vitro model of Parkinson’s disease. Degener.
Neurol. Neuromuscul. Dis. 2019, 9, 79–88. [CrossRef]

16. Floris, I.; Rose, T.; Rojas, J.A.C.; Appel, K.; Roesch, C.; Lejeune, B. Pro-Inflammatory Cytokines at Ultra-Low Dose Ex-
ert Anti-Inflammatory Effect In Vitro: A Possible Mode of Action Involving Sub-Micron Particles? Dose-Response 2020, 18,
1559325820961723. [CrossRef] [PubMed]

17. Wu, R.-Q.; Zhang, D.-F.; Tu, E.; Chen, Q.-M.; Chen, W. The mucosal immune system in the oral cavity—an orchestra of T cell
diversity. Int. J. Oral. Sci. 2014, 6, 125–132. [CrossRef] [PubMed]

18. Hovav, A.-H. Dendritic cells of the oral mucosa. Mucosal Immunol. 2014, 7, 27–37. [CrossRef] [PubMed]
19. Pechkovsky, D.V.; Potapnev, M.P.; Zalutskaya, O.M. Different patterns of cytokine regulation of phagocytosis and bacterial killing

by human neutrophils. Int. J. Antimicrob. Agents 1996, 7, 33–40. [CrossRef]
20. Paludan, S.R. Synergistic action of pro-inflammatory agents: Cellular and molecular aspects. J. Leukoc. Biol. 2000, 67, 18–25.

[CrossRef]

http://www.ncbi.nlm.nih.gov/books/NBK8142/
http://doi.org/10.1016/B0-12-370879-6/00416-6
http://www.ncbi.nlm.nih.gov/pubmed/17323712
http://doi.org/10.1037/0033-2909.130.4.601
http://www.ncbi.nlm.nih.gov/pubmed/15250815
http://doi.org/10.1038/s41598-021-83577-3
http://doi.org/10.1016/j.jtcms.2016.01.003
http://doi.org/10.1172/jci.insight.131487
http://doi.org/10.1002/14651858.CD000980.pub3
http://doi.org/10.1001/jama.287.3.337
http://doi.org/10.4236/aid.2016.61002
http://doi.org/10.1177/1559325820914092
http://doi.org/10.1155/2020/1594573
http://doi.org/10.3390/ijms22136717
http://www.ncbi.nlm.nih.gov/pubmed/34201546
http://doi.org/10.2147/DNND.S202966
http://doi.org/10.1177/1559325820961723
http://www.ncbi.nlm.nih.gov/pubmed/33633511
http://doi.org/10.1038/ijos.2014.48
http://www.ncbi.nlm.nih.gov/pubmed/25105816
http://doi.org/10.1038/mi.2013.42
http://www.ncbi.nlm.nih.gov/pubmed/23757304
http://doi.org/10.1016/0924-8579(96)00007-6
http://doi.org/10.1002/jlb.67.1.18


Int. J. Mol. Sci. 2022, 23, 110 21 of 22

21. Wesemann, D.R.; Benveniste, E.N. STAT-1α and IFN-γ as Modulators of TNF-α Signaling in Macrophages: Regulation and
Functional Implications of the TNF Receptor 1:STAT-1α Complex. J. Immunol. 2003, 171, 5313–5319. [CrossRef]

22. Bradley, L.M.; Dalton, D.K.; Croft, M. A direct role for IFN-gamma in regulation of Th1 cell development. J. Immunol. 1996,
157, 1350–1358. [PubMed]

23. Kak, G.; Raza, M.; Tiwari, B.K. Interferon-gamma (IFN-γ): Exploring its implications in infectious diseases. Biomol. Concepts 2018,
9, 64–79. [CrossRef] [PubMed]

24. Mily, A.; Kalsum, S.; Loreti, M.G.; Rekha, R.S.; Muvva, J.R.; Lourda, M.; Brighenti, S. Polarization of M1 and M2 Human
Monocyte-Derived Cells and Analysis with Flow Cytometry upon Mycobacterium tuberculosis Infection. J. Vis. Exp. 2020,
163, 61807. [CrossRef]

25. Byrne, A.J.; Mathie, S.A.; Gregory, L.G.; Lloyd, C.M. Pulmonary macrophages: Key players in the innate defence of the airways.
Thorax 2015, 70, 1189–1196. [CrossRef] [PubMed]

26. Chacón-Salinas, R.; Serafín-López, J.; Ramos-Payán, R.; Méndez-Aragón, P.; Hernández-Pando, R.; Soolingen, D.V.; Flores-Romo,
L.; Estrada-Parra, S.; Estrada-García, I. Differential pattern of cytokine expression by macrophages infected in vitro with different
Mycobacterium tuberculosis genotypes. Clin. Exp. Immunol. 2005, 140, 443–449. [CrossRef]

27. Riha, P.; Rudd, C.E. CD28 co-signaling in the adaptive immune response. Self Nonself 2010, 1, 231–240. [CrossRef] [PubMed]
28. Tsoukas, C.D.; Landgraf, B.; Bentin, J.; Valentine, M.; Lotz, M.; Vaughan, J.H.; Carson, D.A. Activation of resting T lymphocytes

by anti-CD3 (T3) antibodies in the absence of monocytes. J. Immunol. 1985, 135, 1719–1723. [PubMed]
29. Ahout, I.M.L.; Jans, J.; Haroutiounian, L.; Simonetti, E.R.; van der Gaast-de Jongh, C.; Diavatopoulos, D.A.; de Jonge, M.I.; de

Groot, R.; Ferwerda, G. Reduced Expression of HLA-DR on Monocytes During Severe Respiratory Syncytial Virus Infections.
Pediatr. Infect. Dis. J. 2016, 35, e89. [CrossRef]

30. Shao, Y.; Saredy, J.; Yang, W.Y.; Sun, Y.; Lu, Y.; Saaoud, F.; Drummer, C.; Johnson, C.; Xu, K.; Jiang, X.; et al. Vascular Endothelial
Cells and Innate Immunity. Arterioscler. Thromb. Vasc. Biol. 2020, 40, e138–e152. [CrossRef]

31. Wedgwood, J.F.; Hatam, L.; Bonagura, V.R. Effect of interferon-gamma and tumor necrosis factor on the expression of class I and
class II major histocompatibility molecules by cultured human umbilical vein endothelial cells. Cell. Immunol. 1988, 111, 1–9.
[CrossRef]

32. Wang, X.; Yang, L.; Huang, F.; Zhang, Q.; Liu, S.; Ma, L.; You, Z. Inflammatory cytokines IL-17 and TNF-α up-regulate PD-L1
expression in human prostate and colon cancer cells. Immunol. Lett. 2017, 184, 7–14. [CrossRef] [PubMed]

33. Liu, C.-W.; Sung, H.-C.; Lin, S.-R.; Wu, C.-W.; Lee, C.-W.; Lee, I.-T.; Yang, Y.-F.; Yu, I.-S.; Lin, S.-W.; Chiang, M.-H.; et al. Resveratrol
attenuates ICAM-1 expression and monocyte adhesiveness to TNF-α-treated endothelial cells: Evidence for an anti-inflammatory
cascade mediated by the miR-221/222/AMPK/p38/NF-κB pathway. Sci. Rep. 2017, 7, 44689. [CrossRef] [PubMed]

34. Byrne, A.M.; Goleva, E.; Chouiali, F.; Kaplan, M.H.; Hamid, Q.A.; Leung, D.Y.M. Induction of GITRL expression in human
keratinocytes by Th2 cytokines and TNF-α: Implications for atopic dermatitis. Clin. Exp. Allergy 2012, 42, 550–559. [CrossRef]
[PubMed]

35. Small, A.G.; King, J.R.; Rathjen, D.A.; Ferrante, A. The Role of Phagocytes in Immunity to Candida albicans. In Candida Albicans;
IntechOpen: London, UK, 2018. [CrossRef]

36. Calabrese, E.J.; Giordano, J. Ultra low doses and biological amplification: Approaching Avogadro’s number. Pharmacol. Res. 2021,
170, 105738. [CrossRef] [PubMed]

37. Wang, Z.; Zhou, S.; Sun, C.; Lei, T.; Peng, J.; Li, W.; Ding, P.; Lu, J.; Zhao, Y. Interferon-γ inhibits nonopsonized phagocytosis of
macrophages via an mTORC1-c/EBPβ pathway. J. Innate Immun. 2015, 7, 165–176. [CrossRef] [PubMed]

38. Murray, P.J.; Allen, J.E.; Biswas, S.K.; Fisher, E.A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L.B.; Lawrence, T.;
et al. Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity 2014, 41, 14–20. [CrossRef]

39. Koning, N.; van Eijk, M.; Pouwels, W.; Brouwer, M.S.M.; Voehringer, D.; Huitinga, I.; Hoek, R.M.; Raes, G.; Hamann, J. Expression
of the inhibitory CD200 receptor is associated with alternative macrophage activation. J. Innate Immun. 2010, 2, 195–200. [CrossRef]

40. Goulding, J.; Godlee, A.; Vekaria, S.; Hilty, M.; Snelgrove, R.; Hussell, T. Lowering the threshold of lung innate immune cell
activation alters susceptibility to secondary bacterial superinfection. J. Infect. Dis. 2011, 204, 1086–1094. [CrossRef]

41. Zhong, H.; Bao, W.; Liu, Y.; Yazdanbakhsh, K. Inflammation Response Cytokines IFN-γ and IL-10 Regulate Monocyte Subset
Differentiation. Blood 2019, 134, 3586. [CrossRef]

42. Herrero, C.; Hu, X.; Li, W.P.; Samuels, S.; Sharif, M.N.; Kotenko, S.; Ivashkiv, L.B. Reprogramming of IL-10 activity and signaling
by IFN-gamma. J. Immunol. 2003, 171, 5034–5041. [CrossRef]

43. Geng, P.; Zhu, H.; Zhou, W.; Su, C.; Chen, M.; Huang, C.; Xia, C.; Huang, H.; Cao, Y.; Shi, X. Baicalin Inhibits Influenza A Virus
Infection via Promotion of M1 Macrophage Polarization. Front. Pharmacol. 2020, 11, 1298. [CrossRef] [PubMed]

44. Vazquez, M.I.; Catalan-Dibene, J.; Zlotnik, A. B cells responses and cytokine production are regulated by their immune microenvi-
ronment. Cytokine 2015, 74, 318–326. [CrossRef] [PubMed]

45. Gong, S.; Ruprecht, R.M. Immunoglobulin M: An Ancient Antiviral Weapon—Rediscovered. Front. Immunol. 2020, 11, 1943.
[CrossRef] [PubMed]

46. Jayasekera, J.P.; Moseman, E.A.; Carroll, M.C. Natural antibody and complement mediate neutralization of influenza virus in the
absence of prior immunity. J. Virol. 2007, 81, 3487–3494. [CrossRef] [PubMed]

http://doi.org/10.4049/jimmunol.171.10.5313
http://www.ncbi.nlm.nih.gov/pubmed/8759714
http://doi.org/10.1515/bmc-2018-0007
http://www.ncbi.nlm.nih.gov/pubmed/29856726
http://doi.org/10.3791/61807
http://doi.org/10.1136/thoraxjnl-2015-207020
http://www.ncbi.nlm.nih.gov/pubmed/26286722
http://doi.org/10.1111/j.1365-2249.2005.02797.x
http://doi.org/10.4161/self.1.3.12968
http://www.ncbi.nlm.nih.gov/pubmed/21487479
http://www.ncbi.nlm.nih.gov/pubmed/3926881
http://doi.org/10.1097/INF.0000000000001007
http://doi.org/10.1161/ATVBAHA.120.314330
http://doi.org/10.1016/0008-8749(88)90046-9
http://doi.org/10.1016/j.imlet.2017.02.006
http://www.ncbi.nlm.nih.gov/pubmed/28223102
http://doi.org/10.1038/srep44689
http://www.ncbi.nlm.nih.gov/pubmed/28338009
http://doi.org/10.1111/j.1365-2222.2012.03956.x
http://www.ncbi.nlm.nih.gov/pubmed/22417213
http://doi.org/10.5772/intechopen.80683
http://doi.org/10.1016/j.phrs.2021.105738
http://www.ncbi.nlm.nih.gov/pubmed/34157423
http://doi.org/10.1159/000366421
http://www.ncbi.nlm.nih.gov/pubmed/25277143
http://doi.org/10.1016/j.immuni.2014.06.008
http://doi.org/10.1159/000252803
http://doi.org/10.1093/infdis/jir467
http://doi.org/10.1182/blood-2019-129515
http://doi.org/10.4049/jimmunol.171.10.5034
http://doi.org/10.3389/fphar.2020.01298
http://www.ncbi.nlm.nih.gov/pubmed/33117149
http://doi.org/10.1016/j.cyto.2015.02.007
http://www.ncbi.nlm.nih.gov/pubmed/25742773
http://doi.org/10.3389/fimmu.2020.01943
http://www.ncbi.nlm.nih.gov/pubmed/32849652
http://doi.org/10.1128/JVI.02128-06
http://www.ncbi.nlm.nih.gov/pubmed/17202212


Int. J. Mol. Sci. 2022, 23, 110 22 of 22

47. Tagliacarne, S.C.; Valsecchi, C.; Benazzo, M.; Nichelatti, M.; Marseglia, A.; Ciprandi, G.; Bernasconi, S. Low-dose multicomponent
medication modulates humoral and cellular immune response in an ex-vivo study on children subjected to adenoid surgery.
Immunol. Lett. 2018, 203, 95–101. [CrossRef]

48. Lawlor, N.; Nehar-Belaid, D.; Grassmann, J.D.S.; Stoeckius, M.; Smibert, P.; Stitzel, M.L.; Pascual, V.; Banchereau, J.; Williams, A.;
Ucar, D. Single Cell Analysis of Blood Mononuclear Cells Stimulated Through Either LPS or Anti-CD3 and Anti-CD28. Front.
Immunol. 2021, 12, 636720. [CrossRef] [PubMed]

49. Samstag, Y.; Emmrich, F.; Staehelin, T. Activation of human T lymphocytes: Differential effects of CD3- and CD8-mediated signals.
Proc. Natl. Acad. Sci. USA 1988, 85, 9689–9693. [CrossRef]

50. Borrego, F.; Peña, J.; Solana, R. Regulation of CD69 expression on human natural killer cells: Differential involvement of protein
kinase C and protein tyrosine kinases. Eur. J. Immunol. 1993, 23, 1039–1043. [CrossRef]

51. Ochiai, K.; Kagami, M.; Nakazawa, T.; Sugiyama, T.; Sueishi, M.; Ito, M.; Tomioka, H. Regulation of CD69 Expression on
Eosinophil Precursors by Interferon-γ. Int. Arch. Allergy Immunol. 2000, 122, 28–32. [CrossRef]

52. López-Cabrera, M.; Muñoz, E.; Blázquez, M.V.; Ursa, M.A.; Santis, A.G.; Sánchez-Madrid, F. Transcriptional regulation of the
gene encoding the human C-type lectin leukocyte receptor AIM/CD69 and functional characterization of its tumor necrosis
factor-alpha-responsive elements. J. Biol. Chem. 1995, 270, 21545–21551. [CrossRef]

53. Voigt, J.; Hünniger, K.; Bouzani, M.; Jacobsen, I.D.; Barz, D.; Hube, B.; Löffler, J.; Kurzai, O. Human natural killer cells acting as
phagocytes against Candida albicans and mounting an inflammatory response that modulates neutrophil antifungal activity. J.
Infect. Dis. 2014, 209, 616–626. [CrossRef] [PubMed]

54. Hershman, M.J.; Appel, S.H.; Wellhausen, S.R.; Sonnenfeld, G.; Polk, H.C. Interferon-gamma treatment increases HLA-DR
expression on monocytes in severely injured patients. Clin. Exp. Immunol. 1989, 77, 67–70. [PubMed]

55. Kinter, A.L.; Godbout, E.J.; McNally, J.P.; Sereti, I.; Roby, G.A.; O’Shea, M.A.; Fauci, A.S. The common gamma-chain cytokines
IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J. Immunol. 2008, 181, 6738–6746.
[CrossRef] [PubMed]

56. Guan, Z.; Song, B.; Liu, F.; Sun, D.; Wang, K.; Qu, H. TGF-β induces HLA-G expression through inhibiting miR-152 in gastric
cancer cells. J. Biomed. Sci. 2015, 22, 107. [CrossRef] [PubMed]

57. Suzuki, Y.; Tanigaki, T.; Heimer, D.; Wang, W.; Ross, W.G.; Murphy, G.A.; Sakai, A.; Sussman, H.H.; Vu, T.H.; Raffin, T.A. TGF-beta
1 causes increased endothelial ICAM-1 expression and lung injury. J. Appl. Physiol. 1994, 77, 1281–1287. [CrossRef]

58. Romano, M.; Sironi, M.; Toniatti, C.; Polentarutti, N.; Fruscella, P.; Ghezzi, P.; Faggioni, R.; Luini, W.; van Hinsbergh, V.;
Sozzani, S.; et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 1997,
6, 315–325. [CrossRef]

59. Valenzuela, N.M.; Reed, E.F. Antibodies to HLA Molecules Mimic Agonistic Stimulation to Trigger Vascular Cell Changes and
Induce Allograft Injury. Curr. Transplant. Rep. 2015, 2, 222–232. [CrossRef]

60. Kwon, B. Regulation of Inflammation by Bidirectional Signaling through CD137 and Its Ligand. Immune Netw. 2012, 12, 176–180.
[CrossRef]

61. Croft, M. The role of TNF superfamily members in T-cell function and diseases. Nat. Rev. Immunol. 2009, 9, 271–285. [CrossRef]
62. Tian, J.; Zhang, B.; Rui, K.; Wang, S. The Role of GITR/GITRL Interaction in Autoimmune Diseases. Front. Immunol. 2020,

11, 588682. [CrossRef]
63. Nocentini, G.; Riccardi, C. GITR: A multifaceted regulator of immunity belonging to the tumor necrosis factor receptor superfamily.

Eur. J. Immunol. 2005, 35, 1016–1022. [CrossRef]
64. Dittmer, U.; He, H.; Messer, R.J.; Schimmer, S.; Olbrich, A.R.M.; Ohlen, C.; Greenberg, P.D.; Stromnes, I.M.; Iwashiro, M.;

Sakaguchi, S.; et al. Functional Impairment of CD8+ T Cells by Regulatory T Cells during Persistent Retroviral Infection. Immunity
2004, 20, 293–303. [CrossRef]

65. Yamazaki, T.; Akiba, H.; Iwai, H.; Matsuda, H.; Aoki, M.; Tanno, Y.; Shin, T.; Tsuchiya, H.; Pardoll, D.M.; Okumura, K.; et al.
Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol. 2002, 169, 5538–5545. [CrossRef]

66. Eppihimer, M.J.; Gunn, J.; Freeman, G.J.; Greenfield, E.A.; Chernova, T.; Erickson, J.; Leonard, J.P. Expression and regulation of
the PD-L1 immunoinhibitory molecule on microvascular endothelial cells. Microcirculation 2002, 9, 133–145. [CrossRef] [PubMed]

67. Lehmann, J.C.U.; Jablonski-Westrich, D.; Haubold, U.; Gutierrez-Ramos, J.-C.; Springer, T.; Hamann, A. Overlapping and
selective roles of endothelial intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 in lymphocyte trafficking. J. Immunol. 2003,
171, 2588–2593. [CrossRef] [PubMed]

68. Dustin, M.L.; Rothlein, R.; Bhan, A.K.; Dinarello, C.A.; Springer, T.A. Induction by IL 1 and interferon-gamma: Tissue distribution,
biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol. 1986, 137, 245–254. [PubMed]

69. Wung, B.S.; Ni, C.W.; Wang, D.L. ICAM-1 induction by TNFα and IL-6 is mediated by distinct pathways via Rac in endothelial
cells. J. Biomed. Sci. 2005, 12, 91–101. [CrossRef]

70. Othumpangat, S.; Noti, J.D.; McMillen, C.M.; Beezhold, D.H. ICAM-1 regulates the survival of influenza virus in lung epithelial
cells during the early stages of infection. Virology 2016, 487, 85–94. [CrossRef] [PubMed]

71. Vaux, D.L. Research methods: Know when your numbers are significant. Nature 2012, 492, 180–181. [CrossRef]

http://doi.org/10.1016/j.imlet.2018.09.014
http://doi.org/10.3389/fimmu.2021.636720
http://www.ncbi.nlm.nih.gov/pubmed/33815388
http://doi.org/10.1073/pnas.85.24.9689
http://doi.org/10.1002/eji.1830230509
http://doi.org/10.1159/000053628
http://doi.org/10.1074/jbc.270.37.21545
http://doi.org/10.1093/infdis/jit574
http://www.ncbi.nlm.nih.gov/pubmed/24163416
http://www.ncbi.nlm.nih.gov/pubmed/2504520
http://doi.org/10.4049/jimmunol.181.10.6738
http://www.ncbi.nlm.nih.gov/pubmed/18981091
http://doi.org/10.1186/s12929-015-0177-4
http://www.ncbi.nlm.nih.gov/pubmed/26627200
http://doi.org/10.1152/jappl.1994.77.3.1281
http://doi.org/10.1016/S1074-7613(00)80334-9
http://doi.org/10.1007/s40472-015-0065-6
http://doi.org/10.4110/in.2012.12.5.176
http://doi.org/10.1038/nri2526
http://doi.org/10.3389/fimmu.2020.588682
http://doi.org/10.1002/eji.200425818
http://doi.org/10.1016/S1074-7613(04)00054-8
http://doi.org/10.4049/jimmunol.169.10.5538
http://doi.org/10.1080/713774061
http://www.ncbi.nlm.nih.gov/pubmed/11932780
http://doi.org/10.4049/jimmunol.171.5.2588
http://www.ncbi.nlm.nih.gov/pubmed/12928410
http://www.ncbi.nlm.nih.gov/pubmed/3086451
http://doi.org/10.1007/s11373-004-8170-z
http://doi.org/10.1016/j.virol.2015.10.005
http://www.ncbi.nlm.nih.gov/pubmed/26499045
http://doi.org/10.1038/492180a

	Introduction 
	Results 
	MIM Stimulates the Phagocytosis Capabilities of Macrophages In Vitro 
	MIM Reduces the Expression of Cell Surface Markers on CD14+-Derived Macrophages and the Secretion of Anti-Inflammatory Cytokines without Affecting Cell Viability 
	Preventive Treatment MIM Improves Antibody Response at Both Local and Systemic Levels in Influenza A Virus-Induced Respiratory Infection 
	MIM Increases the Proliferation and the Activation of PBMCs In Vitro 
	MIM Modulates the Expression of Endothelial Cell Surface Markers In Vitro 

	Discussion 
	Materials and Methods 
	Tested Items 
	Phagocytosis Capability Assessment Experiments 
	Macrophage Cell Surface Marker Expression and Cytokine Secretion Evaluation 
	In Vivo Experiments 
	Blood Collection 
	Plasmatic Concentrations of Immunoglobulins Assessment 
	Bronchoalveolar Lavage Fluid Differential Leukocyte Counts 
	Viral Load Determination 
	Evaluation of Cell Surface Activation Marker Expression and Proliferation of PBMC Sub-Populations by Flow Cytometry 
	HUVEC Immunoprofiling by Flow Cytometry 
	Statistical Analysis 

	Conclusions 
	References

